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Non-smooth time transformations are used to investigate strongly non-linear periodic free oscillations of a vibro-impact system 
with two degrees of freedom. Allowance for the boundary conditions at collision times enables the singularities induced by these 
transformations to be eliminated. The smoothed equations of motion turn out to be linear. Investigation of the periodic solutions 
reveals vibro-impact states with one- an two-sided collisions, including localized states (only one of the masses experiences collisions 
with stopping devices), and their bifurcation structure, © 1999 Elsevier Science Ltd. All rights reserved. 

Investigations of vibro-impact oscillations and similar solutions have employed a variety of approach- 
es, including Poincar6 mappings [1, 2], reduction to boundary-value problems [3], numerical integra- 
tion of the equations of motion [4], perturbation theory and other analytical methods [5-10]. In this 
paper, free periodic oscillations of a vibro-impact system with two degrees of freedom will be studied 
using non-smooth time transformations [7, 8], previously used to construct a modified perturbation theory 
for strongly non-linear systems [9-12]. The stability or instability of the selected periodic regimes was 
established by numerical integration of the equations of motion with initial data corresponding to the 
theoretical solutions. When this was done, in the stable case the numerical solution remained close to 
the theoretical one for a long time (compared with the periods of the natural oscillations of the linearized 
system), while in the unstable case rapid divergence was observed. 

We will consider a system of two linear oscillators of unit mass and stiffness, linked together by a 
linearly elastic rod of stiffness e. The amplitudes of the oscillations of both masses are limited by 
absolutely stiff stopping devices, symmetrically placed at unit distance from each mass. The equations 
of motion have the form 

/~1 "I-u I 4-E(U I - u  2 ) + P ( u l , / ~ I ) = 0 ,  /~2 4-U 2 +E(U 2 - u  1 ) + P ( u 2 , / j 2 ) = 0  

P ( u i , u i ) =  2ui[~(u i + l ) - ~ ( u i  - 1 ) ] ,  i = 1,2 

(1) 

(the dot stands for differentiation with respect to time t). 
In order to simplify the investigation of vibro-impact states, we introduce a non-smooth time 

transformation [7, 8] 

T x(t)= Tarcsin(sinTI; e(t)=~(t) (2) 

where T is the half-period of the desired solution. With this definition, z = x(t) is a saw-tooth function 
and its derivative (in the sense of the theory of generalized functions) is a rectangular cosine function. 
Expressing the derivatives of Ui(t) in terms of the variable x, we obtain 

fii=u;e, iii=ui'~2-2u~ ~., (-1)k+lS(t-T.), T.=T+kT, e 2 = l  
k=-~ 2 

(the prime stands for differentiation with respect to x). 
Consequently, the second derivative/li contains singular terms, which describe discontinuities at times 

t = T. and vanish everywhere except at these points. These discontinuities are unimportant if at these 
times u/' = 0; otherwise, collisions of the ith mass with the stopping devices are associated with these 
times. But then the non-linear terms in the equations of motion may be written as follows: 
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t'(ui,a ) = 2u'i Z (-1) TM 5(t- T.) 

Here, too, singularities occur at t = T., and again these are unimportant if u~ = 0 at these times 
(note that the zeros of the function u]. are also zeros of the function hi). It is obvious that these 
terms are compensated by the singular terms occurring in the expression for the second derivative 
//i. 

Thus, when investigating periodic states in which every collision of one of the masses with a stopping 
device corresponds to either a collision or a maximum displacement (without collision) of the second 
mass, the equations of motion, after the change of time, are linearized and take the form 

u +ul +u2 +e(uz-u )=O (3) 

Ignoring the trivial cases of in-phase and antiphase normal modes, when there are either no impacts 
or both masses collide simultaneously with the stopping devices, we consider system (3) with the following 
initial conditions 

ul(O)=l,  u~(O)=O (4) 

(the origin of time x is displaced to the point of the first collision, without modifying the notation). Then 
the corresponding solution may be written as follows: 

ul,2 (,C) = 1 + u2(0 ) cos I; + 1 - u,2(0 ) cos a'C + u,l (0) sin z + u,I (0) sin a'c 
2 2 2 2a  

(5) 

where ct = ~/(1+2~) is a coupling parameter, with the plus sign for ul and the minus sign for u2. 
Note that the solutions of Eqs (3), unlike those of the original system, exist only in the domain 

J x I <~ 1. As a matter of  fact, we can define a vibro-impact solution over a half-period of the oscillations, 
solving the boundary-value problem, and then, taking the periodicity of the function x -- x(t) into account, 
periodically continue it to large time intervals. When this is done we have to consider three types of 
periodic vibro-impact oscillations, corresponding to the following boundary conditions 

Type a: u~(T)=0, u 2 ( T ) = - I  

Type b: ul(T) =-1, u~(T)= 0 (6) 

Type c: u~(T) = 0, u2(T ) = 1 

In addition, allowance is made for condition (4) at 1: = 0. Substituting expressions (5) into (6), we 
obtain the following transcendental relations 

(7) 

(0 u~ (0)  sin aT  = I~ 1 + u22 (0) cos T + I,, 1 - u~2 (0) cos aT + u~ ) sin T + I,, 2a  

_ 1 + u 2 (0)  sin T -  I u 1 - u  2 (0)  a sin aT + u~ (0)  cos  T + I u u~ (0)  cos aT = 0 
2 2 2 2a  

Depending on the type of  vibro-impact oscillation, the coefficients take the following values 

T y p e a : I  u= -1,  I u= +l, I ~ = - 1  

Type b: I u = +1, I u = - 1 ,  I~ = - 1  (8) 

Type c: lu = -1, I,, = +1, I~ = +1 

Expressing u[(0) in terms of u2(0) from the second equation of (7) and substituting the result into 
the first equation, we obtain an expression relating the half-period T and Uz(0) 

ua(O)(cosT-IucosaT)+cosT+l, ,cosotT+u~(O)(sinT+~-~sinaT)-21,  = 0  (9) 

and moreover max0~<~< 1 { l Ul(X) I 1, l U2(x) I } ~< 1. 
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Numerical solution of Eq. (9) with varied values of u2(0) reveals complicated periodic vibro-impact 
states of types a, b and c. In what follows we have analysed solutions with half-periods 0 ~< T ~< 2n, but 
low-frequency states may be investigated in a similar way. The stability of the periodic orbits discovered 
here has been investigated numerically, by integrating the resulting equations of motion with theoretically 
predicted initial conditions. 

The simplest case, from the standpoint of predicting periodic vibro-impact states, is that of a small 
coupling parameter (e ~ 1). This has already been investigated in detail [3] and will therefore not be 
considered here. 

Figure 1 presents the branches of the solution in the "total energy E--amplitude u2(0)" plane for a 
value e = 1 of the coupling parameter. Branches 1 and 2 represent stable periodic states (the solid curves) 
and unstable periodic states (the dashed curves) with one-sided impacts of one of the masses with its 
left stopping device, while the other mass collides with the right stopping device (type a), that is, the 
collisions take place with "unlike" stopping devices. The unstable branch 3 and stable branch 4 represent 
oscillations with two-sided collisions of the first mass (type b), the second mass experiencing no collisions. 
Finally, a solution 5 of type c (one-sided collisions of each of the masses with "like" stopping devices) 
is unstable. Some modes of oscillation are shown in the configuration plane (ul, u2) for e = 1 in Fig. 
2; stable modes are indicated by the solid curves and unstable modes by the dashed curves. Comparison 
of the curves in Figs 1 and 2 enables us to draw important conclusions as to the change in the order in 
which the different types of periodic states are "born" as the energy parameter of the system is increased. 

Obviously, if the energies are sufficiently small, the stable modes will be the in-phase and antiphase 
normal modes without collisions, which are not being considered here. In the case of weak coupling 
(e = 0, 1) with increased energy, "saddle point-node" bifurcation will give rise to two pairs of localized 
modes with two-sided collisions of one of the masses [3]. It turns out that in the case e = 1, increasing 
the energy parameter gives rise, first of all (at a value of the parameter close to unity), to the formation 
of stable (la) and unstable (2a) modes with one-sided impacts of the masses on "unlike" stopping devices 
(Fig. 1). Only a further increase in the energy parameter gives rise to two stable and two unstable modes 
of type b, at an energy parameter value close to 2 (only one pair is shown in Figs 1 and 2: one stable 
and one unstable mode). As to modes of type c with one-sided impacts on "like" stopping devices, these 
are unstable. 

In order to demonstrate the increasingly complex behaviour of the system at large values of the 
coupling parameter, we present the data for periodic vibro-impact states at e = 10 (Fig. 3--in the "total 
energy E---amplitude u2(0)" plane; Fig. 4 in the configuration plane (ul, u2)). Here branches la and 
2a (stable, shown in Fig. 3 by the solid curves), 3a-5a (unstable, shown by the dashed curves) represent 
oscillations of type a (collisions with "unlike" stopping devices). In branches la-3a, the half-period varies 
in the range 2 < T < 3; in the other branches, the relevant range is 3/2 < T < 2. Branches of type b 
(two-sided collisions of one of the masses) were observed. When 5/2 < T < 7/2, two of these are unstable 
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(10b, 12b) and one is stable (11b); when 1 < T < 5/s, two are unstable (6b, 7b); finally, when 0 < T < 
1, one is unstable (8b) and one stable (9b). At the same time, unlike the case when e = 1, a stable mode 
(14c) appears (one-sided collisions of the masses with "like" stopping devices) while the second mode 
of this type (13c) is unstable• 

Figure 4 shows some of the stable and unstable modes of types a, b and c that have been found• The 
numbers on the curves in Fig. 4 correspond to the numbering of the modes in Fig. 3. Analysis of the 
results presented in Figs 3 and 4 indicates that the order in which modes of different types are "born" 
is again changed. In particular, stable localized modes, which correspond to two-sided collisions of one 
of the masses and are most important in the case of small e values, may be realized here only at very 
large energies. However, modes with one-sided collisions of the masses with "like" stopping devices 
arise even at small energies. 

This research was supported by the USA National Science Foundation (NSF International, 94-57750). 
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